home *** CD-ROM | disk | FTP | other *** search
- SECTON 6.1èSimple Harmonic Oscillaër - Undamped
-
- äèSolve ê problem
-
- â èèFïd ê period ç a pendulum that is 50 cm = 0.50 m
- long.è For a pendulum, ê period is given by
- èèT = 2π √(l/g)è=è2π √[0.50 m/9.8 m súì] = 1.42 sec
-
- éSèè Consider a mass m that has been suspended from a vertical
- sprïg å allowed ë come ë rest.èThis is known as ê
- equilibrium position å is ê place where ê upward
- sprïg force balances ê downward force ç gravity.èIf ê
- mass is moved eiêr upward or downward, ê sprïg will
- exert a force so as ë move ê mass back ë its equilbrium
- poït.èAlso, ê farêr ê mass is displaced from ê
- equilibrium position, ê stronger ê resërïg force ç
- ê sprïg.èThe simplest model for a sprïg force is
-
- Fè=è- kx
-
- whereèx = displacement from equilbrium
- èèè k = sprïg constant
- The mïus sign ïdicates ê resërïg force.èAs x is mea-
- sured from ê equilbrium poït, ê force ç gravity is
- balanced by ê stretch ç ê sprïg ë ê equilbrium
- position so ê above sprïg force is ê only NET external
- force, so Newën's Second Law becomes
-
- mx»»è= - kx
-
- or mx»» + kxè=è0
-
- èèè k
- x»» + ─ xè=è0
- èèè m
- If ê mass is displaced from equilibrium å released it
- will oscillate up å down.
-
- èèNext consider a mass m suspended by a taut strïg ç
- length L å pulled ë ê side so that ê strïg makes an
- angle Θ from ê vertical.èWhen it is realeased, it will
- swïg back å forth å is called a SIMPLE PENDULUM.èTwo
- dimensional analysis ç ê forces actïg on ê mass pro-
- vides a Newën's Second Law equation for ê angular
- position ç ê mass
-
- mLΘ»»è=è- mgsï[Θ]
-
- This differential equation cannot be solved ï closed form
- but if ê maximum angle is reasonably small, a solvable
- approximation is quite good.èThe MACLAURIN SERIES for sï[Θ]
- (see Section 7.1) is
-
- sï[Θ]è=èΘè-èΘÄ/3!è+èΘÉ/5! -è∙∙∙
-
- For Θ = π/12 = 15°, ê third term is Θì/3! times ê first
- term.è(π/12)/6 ≈ 0.014 i.e. only 1%.èSo ê SMALL ANGLE
- APPROXIMATION that
-
- sï[Θ] ≈ Θ
-
- is quite good.èMakïg this approximation å solvïg for ê
- second derivative leaves
- èèèg
- Θ»» + ─ Θè=è0
- èèèL
-
- èèAs a third situation, consider a loop circuit with an
- open switch å havïg a charged CAPACITOR C å an INDUCTOR
- L.èWhen ê switch is closed, KIRCHOFF's LOOP EQUATION for
- potential difference is
-
- è dIèèèQ
- L ────è+ ───è=è0
- è dtèèèC
-
- The charge Q å ê current I are related ï that I = Q»
- so this equation can be rewritten as
- è1
- LQ»»è+è─── Qè=è0
- èèèèèC
- or
- èèèèè1
- Q»»è+è──── Qè=è0
- LC
-
- èèAll three ç êse differential equations are ï ê
- general form ç
-
- y»» + Üìy = 0
-
- where Üì is a positive constant å ê differentiation is
- with respect ë time.
-
- Sprïgèèèèèèkèèèèèèèèèèè k
- èèèèèèx»» + ─ xè=è0èèèè Üì = ───
- èèèèèèèèèmèèèèèèèèèèè m
-
- Pendulumèèèèègèèèèèèèèèèè g
- èèèèèèΘ»» + ─ Θè=è0èèèè Üì = ───
- èèèèèèèèèLèèèèèèèèèèè L
-
- LC circuitèèèè 1èèèèèèèèèèè 1
- èèèèè Q»» + ──── Qè=è0èèè Üì = ────
- èèèèèèèèèLCèèèèèèèèèèèLC
-
- èè This differential equation describes a phenomena known
- as SIMPLE HARMONIC MOTION å is a LINEAR, CONSTANT COEFFIC-
- IENT, SECOND ORDER differential equation.èThese are discussed
- ï Chapter 3 å this particular case ï Section 3.3.èA
- solution ç ê formèe¡▐ is assumed.èSubstitution ïë ê
- differential equation å cancellïg yields ê INDICIAL
- EQUATION
- mì + Üìè=è0
-
- or mìè=è- Üì
-
- Takïg ê square root yields
-
- mè=è± iÜ
-
- Thus ê general solution
-
- y = C¬cos[Üt] + C½sï[Üt]
-
- If ê ïitial conditionèy(0) = y╠ å y»(0) = y╠» are
- known, ê constants ç ïtegration C¬ å C½ can be computed
-
- èè The quantityèÜèis known as ê ANGULAR FREQUENCY ç ê
- simple harmonic motion å has units ç RADIANS / SEC.èThe
- FREQUENCY ç ê simple harmonic motion is given by
-
- f =èÜ/2π
-
- å tells ê number ç oscillations per unit time.èIt has
- units ç CYCLES / SEC or HERTZ (Hz).è The time for one
- oscillation is called ê PERIOD ç ê simple harmonic motion
- å is given by
-
- Tè=è1/fè=è2π/Ü
-
- The period's units are SECONDS.
-
- èèFor ê three examples that have been considered, ê
- parameters ç ê oscillation are
-
- SPRINGèèèèèÜè=è√ k/mèèèèèè T =è2π √ m/k
-
- PENDULUMèèèèÜè=è√ g/Lèèèèèè T =è2π √ L/g
-
- LC CIRCUITèèèÜè=è√ 1/LCèèèèèèT =è2╥ √ 1/LC
-
- 1è Fïd ê angular frequency ç a sprïg (k = 5 kg súì)
- from which a mass ç 0.2 kg has been suspended.
-
- A)èèè0.05 rad súîèèèèèèB)èèè0.50 rad súî
- C)èèè5.0 rad súîèèèèèè D)èèè50 rad súî
-
- ü è For a mass on a sprïg, ê angular frequency is given
- by
- Üè=è√ k/m
-
- è =è√ [ 5 kg súì / 0.2 kg ]
-
- è =è5 rad súî
-
- ÇèC
-
- 2è Fïd ê frequency ç a sprïg (k = 5 kg súì) from
- which a mass ç 0.2 kg has been suspended.
-
- A)è 0.08 Hzè B)è0.80 Hzè C)è8.0 Hzè D)è80 Hz
-
- ü è For a mass on a sprïg, ê frequency is given by
-
- fè=è[√ k/m] / 2╥
-
- è =è√ [ 5 kg súì / 0.2 kg ]è/è2╥
-
- è =è0.80 Hz
-
- ÇèB
-
- 3è Fïd ê period ç a sprïg (k = 5 kg súì) from
- which a mass ç 0.2 kg has been suspended.
-
- A)è 0.125 sè B)è1.25 sè C)è12.5 sè D)è125 s
-
- ü è For a mass on a sprïg, ê period is given by
-
- Tè=è2╥ √ m/k
-
- è =è2╥ √ [ 0.2 kg /5 kg súì ]
-
- è =è1.25 s
-
- ÇèB
-
- 4èèWhat is ê period ç a pendulum that is 1 meter long?
-
- A)è0.02 secè B)è0.20 secè C)è2.0 secèD)è20 sec
-
- üèè For a simple pendulum, ê period is given by
-
- Tè=è2╥ √ L/g
-
- è =è2╥ √ [ 1 m / 9.8 m súì]
-
- è =è2.00 sec
-
- ÇèC
-
- 5èèHow long must a pendulum be ï order ë have a period
- ç 5 sec?
-
- A)è2.2 mèè B)è4.2 mèè C)è6.2 mèèD)è8.2 m
-
- üèèè For a simple pendulum, ê period is given by
-
- Tè=è2╥ √ L/g
-
- Squarïgèèèèèèèèè L
- èèèèèèèèTì =è4╥ì ───
- èèèèèèèèèèèèè g
- Solvïg for L
- èèèèèèèèèèè Tìg
- èèèèèèèèLè=è─────
- èèèèèèèèèèè 4╥ì
- Substitutïg
- èèèèèèèèèèè (5 s)ì (9.8 m súì)
- èèèèèèèèLè=è────────────────────
- èèèèèèèèèèèèèèè4╥ì
-
- èèèèèèèèLè=è6.20 m
-
- This is roughly 20 feet or 2 sëries tall.
-
- Ç C
-
- 6èèA pendulum has a frequency ç 1 Hz.èHow long is it?
-
- A)è 0.0248 mè B)è0.248 mè C)è2.48 mè D)è24.8 m
-
- ü èè The frequency ç a pendulum is given by
-
- f =è[√ g/L] / 2╥
-
- Squarïg å solvïg for L
- èèèèèèèèèèèè g
- èèèèèèèèLè=è───────
- èèèèèèèèèèè 4╥ìfì
- Substitutïg
- èèèèèèèèèèèè 9.8 m súì
- èèèèèèèèLè=è──────────────
- èèèèèèèèèèèè4╥²(1 súî)ì
-
- èèèèèèèèLè=è0.248 m
-
- ÇèB
-
- 7èA mass ç 0.2 kg is pulled down 0.10 m below ê equilib-
- rium position ç a sprïg (k = 5 kg súì).èIf it is released
- from rest, fïd its position equation.
-
- A)èèè0.10cos[5t]èèèèèè B)èèè-0.10cos[5t]
- C)èèè0.10sï[5t]èèèèèè D)èèè-0.10sï[5t]
-
- ü è As ï Problem 1, Ü is calculated from Ü = √k/m = 5 rad súî
- Thus ê general solution is
-
- y = C¬cos[5t] + C½sï[5t]
-
- The ïitial position is y(0) = - 0.10 m as it is BELOW ê
- equilbrium position which when substituted yields
-
- -0.01 = C¬
-
- As it is released from rest, y»(0) = 0.èDifferentiatïg
- ê general solution yields
-
- y» = -5C¬sï[5t] + 5C½cos[5t]
-
- Substitutïg yields
-
- 0è=è5C½èi.e.èC½ = 0
-
- Thus ê specific solution is
-
- yè= -0.10cos[5t]
-
- Ç B
-
- 8èA mass ç 0.2 kg is pulled down 0.10 m below ê equilib-
- rium position ç a sprïg (k = 5 kg súì).èIf it is released
- from rest, fïd ê first time that it is 0.05 m above ê
- equilibrium position.
-
- A)è 0.21 secè B)è 0.42 secèC)è0.84 secè D) 1.05 sec
-
- üèèUsïg ê parameters ë fïd that Ü = 5 rad súî å usïg
- ê ïitial conditions that y(0) = -0.10 m å y»(0) = 0,
- ê position function (as calculated ï Problem 7) is
-
- y = - 0.10cos[5t]
-
- The question requires fïdïg ê time when y = 0.05 m i.e.
-
- 0.05 = -0.10 cos[5t]
-
- or -0.5 = cos[5t]
-
- The first positive angle that has -0.5 as its cosïe is
- 2π/3 rad which when set equal ë ê argument ç cosïe ï
- ê equation yields
-
- 2π/3 radè=è5 rad súî t
-
- or tè=è2╥/3 radè/ 5 rad súî
-
- è =è2╥/15 s
-
- è =è0.42 sec
- Ç B
-
- 9èA mass ç 0.2 kg is pulled down 0.10 m below ê equilib-
- rium position ç a sprïg (k = 5 kg súì).èIf it is released
- from rest, fïd ê maximum speed ç ê mass.
-
- A)è0.50 m súîèB)è1.00 m súîèC)è1.50 m súîèD) 2.00 m súî
-
- üèèUsïg ê parameters ë fïd that Ü = 5 rad súî å usïg
- ê ïitial conditions that y(0) = -0.10 m å y»(0) = 0,
- ê position function (as calculated ï Problem 7) is
-
- y = - 0.10cos[5t]
-
- èèDifferentiatïg ë fïd ê velocity function yields
-
- y» = + 0.50 sï[5t]
-
- As ê range ç ê sïe function is [-1,1], ê maximum
- speed will 0.50 m súî.
-
- ÇèA
-
- 10èA mass ç 0.2 kg is moved from ê equilibrium position ç
- a sprïg (k = 5 kg súì) so that it passes upward through ê
- equilibrium position with a speed ç 2 m súî.èFïd its
- position equation.
-
- A) 0.40cos[5t] B) -0.40cos[5t]
- C) 0.40sï[5t] D) -0.40sï[5t]
-
- ü è As ï Problem 1, Ü is calculated from Ü = √k/m = 5 rad súî
- Thus ê general solution is
-
- y = C¬cos[5t] + C½sï[5t]
-
- The ïitial position is y(0) = 0èas ê equilbrium position
- is where ê ïitial speed is given which when substituted
- yields
-
- 0 = C
-
- Takïg ê derivative ç ê general solution yields
-
- y» = -5C¬sï[5t] + 5C½cos[5t]
-
- Substitutïg ê ïitial conditionèy»(0) =è+2 m súî yields
-
- 2 m súî =è5c½èi.e.èC½ = 0.4 m súî
-
- Thus ê specific solution is
-
- yè= 0.40sï[5t]
-
- Ç C
-
- 11èA mass ç 0.2 kg is pulled down 0.10 m below ê equilib-
- rium position ç a sprïg (k = 5 kg súì).èIf it is released
- with an upward speed ç 0.75 m súî, fïd its position
- equation.
-
- A)è0.10cos[5t] + 0.15sï[5t] B)è0.10cos[5t] - 0.15sï[5t]
- C)è-0.10cos[5t] + 0.15sï[5t] D) -0.10cos[5t] + 0.15sï[5t]
-
- ü è As ï Problem 1, Ü is calculated from Ü = √k/m = 5 rad súî
- Thus ê general solution is
-
- y = C¬cos[5t] + C½sï[5t]
-
- The ïitial position is y(0) = -0.10 mèas it is BELOW ê
- equilbrium positionèwhich when substituted yields
-
- -0.10 = C
-
- Takïg ê derivative ç ê general solution yields
-
- y» = -5C¬sï[5t] + 5C½cos[5t]
-
- Substitutïg ê ïitial conditionèy»(0) = 0.75 m súî yields
-
- 0.75 m súî =è5c½èi.e.èC½ = 0.15 m súî
-
- Thus ê specific solution is
-
- yè= -0.10cos[5t] + 0.15sï[5t]
-
- Ç C
-
- 12è A pendulum is 2.45 long.èIt is pulled ë ê right ë
- an angle ç 10° (╥/18 rad) å released from rest.èFïd ê
- equation ç motion.
-
- A)èèèΘ = ╥/18 cos[0.5t]èèèB)èèèΘ = -╥/18 cos[0.5t]
- C)èèèΘ = ╥/18 sï[0.5t]èèèD)èèèΘ = -╥/18 sï[0.5t]
-
- üèèèThe angular frequency ç a pendulum is given by
-
- Üè=è√ g/l
-
- è =è√ [ 9.8 m súì ( 2.45 m)]
-
- è =è0.50 rad súî
-
- Thus ê general solution is
-
- Θè=èC¬cos[0.5t] + C½sï[0.5t]
-
- The first ïitial conditionèisèΘ(0) = ╥/18 which when
- substituted yields
-
- ╥/18 = C¬
-
- Differentiatïg ê general solution yields
-
- Θ» = -0.5C¬sï[0.5t] + 0.5C½cos[0.5t]
-
- The second ïitial condition isèΘ»(0) = 0 as released from
- rest which when substituted gives
-
- 0è=è0.5C½èi.e.èC½ = 0
-
- Thus ê specific solution is
-
- Θ = ╥/18 cos[0.5t]
-
- ÇèA
-
-
-
-